4 Case Statements

(1)
A case_statement selects for execution one of a number of alternative
sequences_of statements; the chosen alternative is defined by the value of an
expression.
Syntax
(2)
case statement ::=
case expression is
case statement alternative
{case_ statement alternative}
end case;
(3)
case statement alternative ::=
when discrete choice list =>
sequence of statements
Name Resolution Rules
) |
The expression is expected to be of any discrete type. The expected type for each
discrete_choice is the type of the expression.
Legality Rules
) |
The expressions and discrete ranges given as discrete _choices of a case_statement
shall be static. A discrete choice others, if present, shall appear alone and in the last
discrete choice list.
©) |
The possible values of the expression shall be covered as follows:
(7)
 If the expression is a name (including a type conversion or a function_call)
having a static and constrained nominal subtype, or is a qualified expression
whose subtype mark denotes a static and constrained scalar subtype, then each
non-others discrete choice shall cover only values in that subtype, and each
value of that subtype shall be covered by some discrete choice (either
explicitly or by others).
®)

« If the type of the expression is root_integer, universal integer, or a descendant
of a formal scalar type, then the case statement shall have an others
discrete_choice.

©)



(10)

(11)
(12)

(13)

(14)

(17)

« Otherwise, each value of the base range of the type of the expression shall be
covered (either explicitly or by others).

Two distinct discrete _choices of a case _statement shall not cover the same value.

Dynamic Semantics

For the execution of a case_statement the expression is first evaluated.

If the value of the expression is covered by the discrete choice list of some
case statement alternative, then the sequence of statements of the alternative is
executed.

Otherwise (the value is not covered by any discrete choice list, perhaps due to being
outside the base range), Constraint Error is raised.
NOTES

(5) The execution of a case_statement chooses one and only one alternative.
Qualification of the expression of a case statement by a static subtype can
often be used to limit the number of choices that need be given explicitly.

Examples
Examples of case statements:

case Sensor is
when Elevation => Record Elevation (Sensor Value);
when Azimuth => Record Azimuth (Sensor Value) ;
when Distance => Record Distance (Sensor Value);
when others => null;

end case;

case Today 1is
when Mon => Compute Initial Balance;
when Fri => Compute Closing Balance;
when Tue .. Thu => Generate Report (Today);
when Sat .. Sun => null;

end case;

case Bin Number (Count) is
when 1 => Update Bin(1);
when 2 => Update Bin(2);

when 3 | 4 =>
Empty Bin(1);
Empty Bin(2);
when others => raise Error;
end case;



