
.4 Case Statements
(1)

A case_statement selects for execution one of a number of alternative
sequences_of_statements; the chosen alternative is defined by the value of an
expression.

Syntax

(2)
 case_statement ::=
 case expression is
 case_statement_alternative
 {case_statement_alternative}
 end case;
(3)
 case_statement_alternative ::=
 when discrete_choice_list =>
 sequence_of_statements

Name Resolution Rules

(4)
The expression is expected to be of any discrete type. The expected type for each
discrete_choice is the type of the expression.

Legality Rules

(5)
The expressions and discrete_ranges given as discrete_choices of a case_statement
shall be static. A discrete_choice others, if present, shall appear alone and in the last
discrete_choice_list.

(6)
The possible values of the expression shall be covered as follows:

(7)

• If the expression is a name (including a type_conversion or a function_call)
having a static and constrained nominal subtype, or is a qualified_expression
whose subtype_mark denotes a static and constrained scalar subtype, then each
non-others discrete_choice shall cover only values in that subtype, and each
value of that subtype shall be covered by some discrete_choice (either
explicitly or by others).

(8)

• If the type of the expression is root_integer, universal_integer, or a descendant
of a formal scalar type, then the case_statement shall have an others
discrete_choice.

(9)

• Otherwise, each value of the base range of the type of the expression shall be
covered (either explicitly or by others).

(10)
Two distinct discrete_choices of a case_statement shall not cover the same value.

Dynamic Semantics

(11)
For the execution of a case_statement the expression is first evaluated.

(12)
If the value of the expression is covered by the discrete_choice_list of some
case_statement_alternative, then the sequence_of_statements of the _alternative is
executed.

(13)
Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being
outside the base range), Constraint_Error is raised.

NOTES
(14)

(5) The execution of a case_statement chooses one and only one alternative.
Qualification of the expression of a case_statement by a static subtype can
often be used to limit the number of choices that need be given explicitly.

Examples

(15)
Examples of case statements:

(16)
 case Sensor is
 when Elevation => Record_Elevation(Sensor_Value);
 when Azimuth => Record_Azimuth (Sensor_Value);
 when Distance => Record_Distance (Sensor_Value);
 when others => null;
 end case;
(17)
 case Today is
 when Mon => Compute_Initial_Balance;
 when Fri => Compute_Closing_Balance;
 when Tue .. Thu => Generate_Report(Today);
 when Sat .. Sun => null;
 end case;
(18)
 case Bin_Number(Count) is
 when 1 => Update_Bin(1);
 when 2 => Update_Bin(2);
 when 3 | 4 =>
 Empty_Bin(1);
 Empty_Bin(2);
 when others => raise Error;
 end case;

